印染废水膜分离印染设备技术应用技术分析
文中介绍了印染废水的来源和特点,论述了印染废水的传统处理方法(物化法、生化法)及其优缺点,描述了膜分离技术的分类、机理及优点,以及重点阐述了微滤、超滤、纳滤、反渗透、双膜等膜分离技术在印染废水处理中的应用及存在问题,并对膜分离技术今后的发展方向进行了展望,同时为印染废水的处理与回用提供指导作用.
引言
纺织工业作为我国传统支柱产业的一个重要分支,一直以来,除了满足人们衣着所需及产业用品的需求外,还在增加出口创汇和社会就业、积累建设资金等相关方面起到重要作用.然而作为纺织印染的第一大国,每年排放的印染废水量高达30×108t,占全国工业废水排放总量的35%,这部分排放废水的回用率还不到10%,一直处在全国工业行业废水回用率的最低.
1?印染废水的来源与特性
印染废水主要来源于退浆、煮练、漂白、丝光、染色、后整理等工序中排放的废水.该废水具有色度大、有机物含量高、可生化性差、含盐量高、电导率大、水质变化范围大、pH值变化大、水温水量变化大以及生物毒性等特点,见表1.
2、印染废水的传统处理方法及优缺点
目前,用于印染废水处理的传统方法很多,主要包括物化法、生化法和生物-物化复合法.其中,物化法一般为吸附、混凝沉淀、混凝气浮等,生化法一般为水解酸化法、活性污泥法、生物膜法、氧化塘法和厌氧生物法等.
传统方印染设备法对印染废水有一定的处理效果,并因其处理费用低而被广泛应用,但存在一些急需要解决的问题.如物化法去除率低,出水一般不能达标排放,生物处理法中活性污泥沉降性能低,生化反应速率比较缓慢,并且剩余污泥的处理费用较高.随着一些新型的染料、浆料、助剂不断地使用,废水中的难降解物质和生物毒性物质越来越多,使得传统处理方法在CODCr去除率和脱色效果等方面很不理想,出水CODCr和色度往往很难达到日益严格的废水排放标准.
3?膜分离技术概况
膜分离技术是以选择性透过膜为分离介质,膜在某种推动力(如浓度差、压力差、电位差等)作用下,可以选择性地透过某些物质而保留溶液中其它组分,以达到分离、浓缩的目的.分离膜通常有固膜、液膜及气膜3类.其中固膜在工业上应用最多;液膜只有少数在工业上应用,大部分用在废水处理中;气膜分离还处在实验室研究阶段.固膜以高分子合成膜为主,近年来,无机膜材料,特别是陶瓷膜,因其耐高温、机械强度高、化学性质稳定等优点,发展势头迅猛,正进入工业应用.
膜分离技术按分离功能划分又可分为微滤(MF)、超滤(UF)、纳滤(NF)以及反渗透(RO)等,它们的分离机理、应用范围等见表2.
从表2中可以看到,膜分离过程只是用压力作为推动力、无相变且可选择性透过,与传统的处理方法比较,具有分离效率高、节能无污染、工艺简单、操作方便、过程易控制等优点.
4.4反渗透技术在印染废水处理中的应用
反渗透技术是膜分离技术领域中投资高、难度大的一项技术,但因分离效率高、无相变、操作方便而广泛应用于电子、半导体、制药、食品化工、医疗、环保等领域.反渗透膜是采用纳米级分离材印染设备料,截留对象是所有离子,处理后,离子和大部分有机物不能透过膜而形成浓缩液,便于回收有用物质,而水分子透过膜成为透析液,可回用于印染生产工序.对水质要求高的印染用水,可采用反渗透膜进行脱盐处理,具有除盐效率高、技术推广前景好等优势.
Shyh-FangKang等[24]采用H2O2/UV+RO处理纺织印染废水,研究表明,H2O2/UV可以使废水中的大分子有机物氧化成小分子物质或矿化,在操作压力为200psi(145psi=1MPa)条件下,经过2次RO,DOC去除率达到95%,色度去除率几乎100%,出水可回用到印染工艺.卢徐节,朱华土[25]采用预处印染设备理/反渗透耦合工艺深度处理印染废水并回用,结果表明,此工艺能有效处理印染废水,对色度和浊度的去除率达到100%,对COD的去除率>90%,脱盐率>98%,出水水质完全符合印染车间的使用要求.段晓笛等[26]采用反渗透-微电解集成技术处理印染废水,CODCr、浊度、色度去除率分别达到75%、99%、100%,处理后的水质能够达到排放标准.涂德贵[27]采用水解酸化池-接触氧化池-气浮池部分已达标的印染废水经深度处理后,进入反渗透膜处理系统进行除盐处理.试验结果表明,电导率截留率可达98.6%以上,出水CODCr在40mg/L以下,色度低于25倍,远超过国家一级排放标准(GB4287-1992),水回收率可达到50%,回用水中SS值、COD值、印染设备色度、浊度、铁离子含量均未检出,同时膜处理后的浓缩液也能达到国家一级排放标准.