高频地波雷达工作原理介绍
高频地波雷达工作原理介绍
高频地波雷达作为一种新兴的海洋监测技术,具有超视距、大范围、全天候以及低成本等优点,被认为是一种能实现对各国专属经济区(EEZ)监测进行有效监测的高科技手段。各临海发达国家均进行了研发投入,并实施了多年的对比验证和应用示范。
工作原理
无线电波朝海面发射时,在海水表面会存在一种电磁波传播模式,称为地波(Ground Wave)是一种表面波(Surface Wave),因此高频地波雷达也叫做高频表面波雷达(HF Surface Wave Radar)。在中波和短波段海水表面的地波传播衰减很小,而且地波在一定程度上会沿着弯曲的地球表面传播,到达地平线以下很远的地方,即实现超视距传播。因此利用地波超视距传播特性进行探测的高频地波雷达也称为地波超视距雷达(Over-The-Horizon Radar),探测距离根据发射功率和频率的不同通常可达到200~500km。另外两种类型的超视距雷达分别是天波超视距雷达和利用大气波导特征的微波雷达,前者通过电离层对高频无线电波的反射实现对数千公里外目标的探测,后者可以对一两百公里外的目标进行探测。
地波雷达海况探测的基础类似于晶格对X射线的Bragg散射,从左上方入射的两条射线(相同波源)被原子散射,在特定的观察方向上,如果两条射线的波程差为2的整数倍,那么将会观察到亮条纹;如果波程差比2的整数倍多,那么两射线能量相消,观察到的是暗条纹。
真实的海面不会是简单正弦波列,但是可以用类似于Fourier变换的方式把一个真实的海面分解成为千千万万简单正弦波列成分的叠加,这些正弦波列有不同幅度、周期、初相和传播方向。那么这无数列正弦海浪成分是否都对电磁波产生散射呢?当然都会!但是并非所有的成分都产生相同的贡献,贡献最大的海浪成分还是图2所示的那类正弦波列,即满足,并且波矢量方向位于电磁波入射平面内的正弦海浪。对于岸基雷达探测, = 0?,即L = / 2,也就是波长等于雷达电波波长一半的海浪会对电波产生最强的后向散射。
综上所述,虽然海面由无数的波浪组成,但岸基地波雷达主要只对特定的海浪感兴趣:
A. 波长等于电波波长的一半;
B. 传播方向要么接近雷达,要么远离雷达。
海面上满足上述条件的海浪总是存在,因此雷达总可以收到较强的海面回波,这也是前面所说当初人们发现海面上总是存在雷达“干扰”的原因!
我们知道运动的物体可以对入射波产生多普勒效应,电磁波照射到动态的海面上时,回波也会由于多普勒效应而产生相对于雷达发射频率的偏移。对回波信号进行谱分析就会发现,回波谱峰相对于雷达载频有多普勒频偏,其特点有二:
1. 同时存在正、负频偏,频谱图上的正、负谱峰称为左、右Bragg峰;
2. 左、右Bragg峰的频率偏移量基本相同,且主要只与雷达工作频率有关。
导致这两个特点的因素正好与上述产生主要散射的海浪特点相对应:特点1对应上述特征B,特点2对应上述特征A。在理解特点2时需要明白海洋重力波传播的一个基本结论:海面上确定波长的重力波,其传播相速度也是确定的。相速度确定的话,它对电磁波所产生的多普勒频移就是确定的了,也就有了上述特点。
上面所说的是没有海水流动的情形。由于各类物理、化学过程的作用,海面上总是有海流存在,海流作为海水的整体运动,会在上面所说的由波浪传播相速度所导致的较大固定频移的基础上再附加一个由流速所导致的微小频偏,这个附加频偏对左、右Bragg峰的影响是相同的:远离雷达的流速分量使左、右Bragg峰均向负频率方向偏移,接近雷达的流速分量使它们向正频率方向偏移。
地波雷达就是通过测量这个附加频偏从而获知海面海流速度的。当然一部雷达只能测量到海流的径向分量,要获得矢量海流,要么用两部以上的雷达从不同方向探测,要么就需要结合海洋动力学模型进行推算。
有关上面的的专业知识就介绍到这里了,耗材汇后续将进一步整理有关专业知识,欢迎持续关注。如果有实验室耗材方面的需求,欢迎来电咨询。